Root problem

Universe

squaresr2b2
(triangles) ∧ (¬green)r1b1
greengreengreengreen

CoLa

universe (squares) ∨ (triangles) = {r2, b2, r1, b1, green, green, green}; 
property squares = {r2, b2}; 
property (triangles) ∧ (¬green) = {r1, b1}; 
property green = {green, green, green}; 

Configuration

1234

CoLa

permutation (size == 4) of entity universe (perm)

Constraints

2green

CoLa

Position 2: green; 
Nr. squares = 2; 

18

Configuration of size 4

Universe

(triangles) ∧ (¬green)r1b1
squaresr2b2
greengreengreengreen

CoLa

universe (squares) ∨ (triangles) = {r2, b2, r1, b1, green, green, green}; 
property (triangles) ∧ (¬green) = {r1, b1}; 
property squares = {r2, b2}; 
property green = {green, green, green}; 

Configuration

1234

CoLa

Obj 1:  (squares) ∨ (triangles); 
Obj 2:  (squares) ∨ (triangles); 
Obj 3:  (squares) ∨ (triangles); 
Obj 4:  (squares) ∨ (triangles); 

Constraints

2green

CoLa

Position 2: green; 
Nr. squares = 2; 

1

Left split: case 1 green are s.t. [Nr. squares = 0, Nr. green = 1, Nr. ¬green = 0]

Universe

squaresr2b2
(triangles) ∧ (¬green)r1b1
greengreengreengreen

CoLa

universe green = {green, green, green}; 
property squares = {r2, b2}; 
property (triangles) ∧ (¬green) = {r1, b1}; 

Configuration

1

CoLa

Obj 1:  green; 

Constraints

CoLa

Nr. squares = 0; 
Nr. green = 1; 
Nr. ¬green = 0; 

$$\frac{\texttip{ \binom{ 0 }{ 0 } }{ Choose 0 of 0 (distinguishable) empty for 1 object(s) } \cdot \texttip{ 1! }{ Permutations of 1 green }}{\texttip{ 1! }{ Extra permutations of (indist.) green }}$$

18

Right split removing 1 green

Universe

squaresr2b2
trianglesr1b1greengreengreen
5

CoLa

universe (squares) ∨ (triangles) = {r2, b2, r1, b1, green, green}; 
property squares = {r2, b2}; 
property triangles = {r1, b1, green, green, green}; 

Configuration

123

CoLa

Obj 1:  (squares) ∨ (triangles); 
Obj 2:  (squares) ∨ (triangles); 
Obj 3:  (squares) ∨ (triangles); 

Constraints

CoLa

Nr. squares in [2, 3]; 

2

Left split: case 2 squares are s.t. [Nr. squares = 2]

Universe

squaresr2b2
trianglesr1b1greengreengreen
5

CoLa

universe squares = {r2, b2}; 
property triangles = {r1, b1, green, green, green}; 

Configuration

12

CoLa

Obj 1:  squares; 
Obj 2:  squares; 

Constraints

CoLa

Nr. squares = 2; 

$$\texttip{ 2! }{ Nr. orders for all objects }$$

3

Right split removing 2 squares

Universe

(squares) ∨ (triangles)r1b1greengreen

CoLa

universe (squares) ∨ (triangles) = {r1, b1, green, green}; 

Configuration

1

CoLa

Obj 1:  (squares) ∨ (triangles); 

$$\frac{\texttip{ \binom{ 2 }{ 0 } }{ Choose 0 of 2 (distinguishable) ??? for 1 object(s) } \cdot \texttip{ 1! }{ Permutations of 1 (squares) ∨ (triangles) }}{\texttip{ 1! }{ Extra permutations of (indist.) ??? }} + \frac{\texttip{ \binom{ 2 }{ 1 } }{ Choose 1 of 2 (distinguishable) ??? for 1 object(s) } \cdot \texttip{ 1! }{ Permutations of 1 (squares) ∨ (triangles) }}{\texttip{ 0! }{ Extra permutations of (indist.) ??? }}$$