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0 Overview

This presentation discusses the following topics:
I How to use Probabilistic Logic Programming (PLP) to model

Probabilistic Argumentation problems

I How to expand traditional PLP semantics to reason over such
models

I How to implement a PLP framework for the new semantics
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1 What is argumentation?

“Humans argue.”1

1Either you already believe it or you would need to argue against it.
Atkinson et al., “Towards Artificial Argumentation”, AI Mag. 38.3 (2017)
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1 What is argumentation?

Argumentation has two main components:
1 Argumentation mining:

• Find - Sources (newspapers, journals,. . . )
• Extract - Relevant text (argumentative/non-argumentative)
• Classify - Arguments (evidence, claims, proponent/opponent . . . )
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1 What is argumentation?

Argumentation mining:
Source - Newspapers, journals,. . .
Extract - Relevant text (argumentative/non-argumentative)
Classify - Evidence, claims, proponent/opponent. . .

2 Abstract reasoning:
• Model - Roles, structure, strength, . . .
• Reason - Find accepted/defeated (undecided?) arguments

We focus on modelling and reasoning. . .
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2 Model: Abstract Argumentation Frameworks

Definition
An Abstract Argumentation Framework (AAF ) is a pair (Args, Att)
where Args is a set of arguments and Att is a binary relation over
Args: Att ⊆ Args×Args.

We can represent an AAF as a directed graph:

f a

r b

f = “Hotel B is recommended by a friend”
a = “Book hotel A”
r = “Hotel A has higher review score”
b = “Book hotel B”
Args = {f, a, r, b}
Att = {(f, a), (a, b), (b, a), (r, b)}
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2 Reasoning: Acceptability semantics

Given an AAF , there are different “recipies” to determine acceptable
arguments1. A set of arguments A ⊆ Args can be:
I Conflict-free (cf.) - when there are no a, b ∈ A s.t. (a, b) ∈ Att

I Admissible - A is cf. and attacks all arguments attacking A

I Stable - A is cf. and attacks all the arguments not in A

I . . .

1Baroni, Caminada, and Giacomin, “An introduction to argumentation
semantics”, Knowl. Eng. Rev. 26.4 (2011).
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2 Reasoning: more expressivity

Each extension to the original AAF requires new ad-hoc semantics to
define classes of acceptable arguments in the new framework.

Combining models
Integrating different formalisms becomes difficult: it requires to
redefine the acceptability semantics with new concepts tailored to the
specific combination of modelling strategies.

What if we had a general-purpose framework with powerful semantics
for encoding many extensions?
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3 Modelling: the advantages of Probabilistic Logic
Programming

Why Probabilistic Logic Programming
Probabilistic Logic Programming and its tools offer a general purpose
framework for logical reasoning and uncertainty. This gives some
advantages over traditional argumentation frameworks:

I Succinctness and expressivity - express complex interactions
between random variables with (first-order) logic rules.

I Flexibility and modularity - change and evolve a model for specific
domains without changing the underlying reasoning algorithms.

I PLP tools - bring to argumentation the general suite of PLP
inference and learning algorithms.
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3 Modelling: What about probabilities?

Definition
A probabilistic argument graph (or probabilistic AAF ) is a tuple
(Args, Att, P ∗) where (Args, Att) is an AAF and P ∗ is a function:
P ∗ : Args→ [0, 1].

f
0.3

a
0.6

r
0.7

b
0.4
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3 Modelling: What about probabilities?

Definition
A probabilistic argument graph (or probabilistic AAF ) is a tuple
(Args, Att, P ∗) where (Args, Att) is an AAF and P ∗ is a function:
P ∗ : Args→ [0, 1]. We can also add a function over attacks:
P× : Args×Args→ [0, 1].

f
0.3

a
0.6

r
0.7

b
0.4

0.5

0.2

1.0 1.0
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3 Modelling: what do probabilities represent?

Probabilities as degrees of belief: they represent how much the
argument or relation is believed.

Epistemic interpretation
A probabilistic argument graph describes:
I arguments’ prior beliefs (P ∗) i.e. a bias.
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3 Modelling: what do probabilities represent?

Probabilities as degrees of belief: they represent how much the
argument or relation is believed.

Epistemic interpretation
A probabilistic argument graph describes:
I arguments’ prior beliefs (P ∗) i.e. a bias.
I how the initial bias is influenced by the other arguments.
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3 Modelling: from probabilistic AAFs to ProbLog

f
0.3

a
0.6

r
0.7

b
0.4

0.3::f. 0.6::a.
0.7::r. 0.4::b.

\+ a :- f.
\+ b :- r.
\+ b :- a.
\+ a :- b.

P (f) = 0.3 P (r) = 0.7
P (a) = 0.4 P (b) = 0.1
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3 Modelling: from gradual AAFs to ProbLog

f
0.3

a
0.6

r
0.7

b
0.4

0.5

0.2

1.0 1.0

0.3::f. 0.6::a.
0.7::r. 0.4::b.
0.5:: \+ a :- f.
0.2:: \+ b :- r.
1.0:: \+ b :- a.
1.0:: \+ a :- b.

P (f) = 0.3 P (r) = 0.7
P (a) = 0.42 P (b) = 0.26
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3 Modelling: from bipolar AAFs to ProbLog

c: “Hotel A has a nice view”

f
0.3

a
0.4

r
0.6

b
0.5

c
0.5

0.5

0.3

0.2

1.0 1.0

0.3::f. 0.6::a.
0.7::r. 0.4::b.

0.5::c.
0.5::\+ a :- f.
1.0::\+ b :- a.
1.0::\+ a :- b.
0.2::\+ b :- r.

0.3::a :- c.

P (f) = 0.3 P (r) = 0.7
P (a) = 0.47 P (b) = 0.25
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3 Modelling: from set-based AAFs to ProbLog

d: “Same taste in hotels”

f
0.3

a
0.4

r
0.6

b
0.5

c
0.5

d
0.5

0.5

0.3

0.2

1.0 1.0

0.3::f. 0.6::a.
0.7::r. 0.4::b.

0.5::c. 0.5::d.
0.5::\+ a :- f, d.

1.0::\+ b :- a.
1.0::\+ a :- b.
0.2::\+ b :- r.

0.3::a :- c.

P (f) = 0.3 P (r) = 0.7
P (a) = 0.5 P (b) = 0.24
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4 Probabilistic Logic Programs

Distribution semantics
Each possible choice of all probabilistic facts (total choice) defines a
possible world: a deterministic program of the chosen facts plus logic
rules

Assumption of traditional PLP semantics
All choices are modelled by probabilistic facts: the total choice
uniquely determines the truth value of all atoms.

Example
In our hotel example for the probabilistic choice where neither the
friend nor the reviews influence the choice of the hotel, logic still
prescribes a choice between the two options.
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4 Probabilistic Logic Programs

Distribution semantics + Well-founded model semantics
Traditional PLP frameworks cannot reason over programs with cyclic
dependencies through negation

c
0.4 a

b
d

0.6

0.4::c.
0.6::d.
a :- c.
b :- d.

a :- \+ b.
b :- \+ a.
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4 Probabilistic Logic Programs

c a

bd

c.
d.

a :- c.
b :- d.

a :- \+ b.
b :- \+ a.

Possible world ω1 = {c, d}: P (ω1) = 0.4 · 0.6 = 0.24

mod(ω1) = {a, b, c, d}
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4 Probabilistic Logic Programs

c a

b

c.

a :- c.
b :- d.

a :- \+ b.
b :- \+ a.

Possible world ω2 = {c}: P (ω2) = 0.4 · (1− 0.6) = 0.16

mod(ω2) = {a, c}
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4 Probabilistic Logic Programs

c a

b

c a c.

a :- c.
b :- d.

a :- \+ b.
b :- \+ a.

Possible world ω2 = {c}: P (ω2) = 0.4 · (1− 0.6) = 0.16

mod(ω2) = {a, c}
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4 Probabilistic Logic Programs

a

bd

d.
a :- c.
b :- d.

a :- \+ b.
b :- \+ a.

Possible world ω3 = {d}: P (ω3) = (1− 0.4) · 0.6 = 0.36

mod(ω3) = {b, d}
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4 Probabilistic Logic Programs

a

bd bd

d.
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4 Probabilistic Logic Programs

a

b

a :- c.
b :- d.

a :- \+ b.
b :- \+ a.

Possible world ω4 = {}: P (ω4) = (1− 0.4) · (1− 0.6) = 0.24

mod(ω4) =
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4 Probabilistic Logic Programs

a

b

a :- c.
b :- d.

→ a :- \+ b.
→ b :- \+ a.

Possible world ω4 = {}: P (ω4) = (1− 0.4) · (1− 0.6) = 0.24

mod(ω4) = ?
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4 Probabilistic Logic Programs

a

b

a

a :- c.
b :- d.

a :- \+ b. > ← >
b :- \+ a. ⊥ ← ⊥

Possible world ω4 = {}: P (ω4) = (1− 0.4) · (1− 0.6) = 0.24

mod(ω4) = {a}
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4 Probabilistic Logic Programs

a

bb

a :- c.
b :- d.

a :- \+ b. ⊥ ← ⊥
b :- \+ a. > ← >

Possible world ω4 = {}: P (ω4) = (1− 0.4) · (1− 0.6) = 0.24

mod(ω4) = {a} or {b}
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4 Probabilistic Logic Programs: well-founded vs stable
model semantics

I Valid ProbLog programs are programs where each total choice
corresponds to exactly one well-founded model.

I ω4 has no well-founded model.

smProbLog programs
smProbLog2 reasons over the (zero or more) stable models of each
total choice.

If a program has one well-founded model then it is its unique stable
model

2Totis, Kimmig, and De Raedt, “SMProbLog: Stable Model Semantics in
ProbLog and its Applications in Argumentation”, StarAI abs/2110.01990 (2021).
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4 Probabilistic Logic Programs: success probability

P.W. Facts Probability Model
ω1 {c, d} 0.24 {a, b, c, d}
ω2 {c} 0.16 {c, a}
ω3 {d} 0.36 {d, b}
ω4 {} 0.24 {a}, {b}

0.4::c.
0.6::d.
a :- c.
b :- d.

a :- \+ b.
b :- \+ a.

What about the probability of atoms?

P (a) =
∑

M |=a,M=mod(ω)

We need to define the probability distribution of the models. . .
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4 Reasoning over non-probabilistic choices

I With stable model semantics we have choices that are prescribed
by logical consistency rather than probabilistic facts.

I We thus assume that for a fixed possible world all further
(logical) choices are equally possible.

I The probability of a model is thus the probability of the possible
world normalized w.r.t. the number of non-probabilistic choices.
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4 Reasoning over non-probabilistic choices

Let L be a probabilistic logic program, ΩL its set of possible worlds,
and mod(ω) the set of models of a possible world ω ∈ ΩL, then:

P (M) = P (ω)
|mod(ω)| for each M ∈ mod(ω)

The probability of an atom is then:

P (a) =
∑

a∈M,M∈mod(ω),ω∈ΩL

P (M)

We thus solve for a query ϕ:

ŴMCL(ϕ) =
∑

M |=ϕ,M∈mod(ω),ω∈ΩL

1
|mod(ω)| ·

∏
l∈M

w(l)

32/50 Stable Model Semantics in ProbLog
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4 Probabilistic Logic Programs: success probability

P.W. Facts Probability Model P (M)
ω1 {c, d} 0.24 {a, b, c, d} 0.24
ω2 {c} 0.16 {c, a} 0.16
ω3 {d} 0.36 {d, b} 0.36
ω4 {} 0.24 {a}, {b} 0.12, 0.12

0.4::c.
0.6::d.
a :- c.
b :- d.

a :- \+ b.
b :- \+ a.

P (c) = 0.24 + 0.16 = 0.4
P (d) = 0.24 + 0.36 = 0.6
P (a) = 0.24 + 0.16 + 0.12 = 0.52
P (b) = 0.24 + 0.36 + 0.12 = 0.72
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4 Probabilistic Logic Programs: inconsistencies

An even (odd, respectively) cycle is a simple cycle with a non-zero
even (odd, respectively) number of negative edges.

Even/odd cycles through negations

I if a program has no even-length cycle, then it has at most one
stable model

I if a program has no odd-length cycle (call-consistent), then it has
at least one stable model
Lin and Zhao, “On Odd and Even Cycles in Normal Logic
Programs” (2004)
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4 Probabilistic Logic Programs: inconsistencies

0.4::c.
0.6::d.
a :- c.
a :- d.
b :- a, \+b.

e :- \+a.

I If c or d are chosen, a is true and the
possible world has 0 stable models

I Therefore logic states that some
total choices are inconsistent with
the domain knowledge.

We use a three-valued interpretation to keep track of the probability
of inconsistent choices.
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4 Probabilistic Logic Programs: inconsistencies

Three-valued interpretaiton
A three-valued interpretation is a pair (T, F ) where T is the set of
atoms interpreted true and F is the set of atoms interpreted false.
The atoms outside T ∪ F are interpreted as inconsistent.

0.4::c.
0.6::d.
a :- c.
a :- d.
b :- a, \+b.
e :- \+a.

P.W. Facts Probability Model
ω1 {c, d} 0.24 {(∅, ∅)}
ω2 {c} 0.16 {(∅, ∅)}
ω3 {d} 0.36 {(∅, ∅)}
ω4 {} 0.24 {({e}, {c, d, a, b})}

P (L |= ⊥) = 0.24 + 0.16 + 0.36 = 0.76
P (e) = P (¬b) = 0.24
P (¬e) = P (b) = 0
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5 Pipelines: differences

I Cycle breaking and CNF conversion do not preserve stable models

I We need a knowledge compiler for stable models: dsharp3

I We need then to count the stable models to solve the ŴMC
problem

3Aziz et al., “Stable Model Counting and Its Application in Probabilistic Logic
Programming” (2015).
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5 Pipelines: WMC

Definition
A NNF is a rooted directed acyclic graph in which each leaf node is
labeled with a literal and each internal node is labeled with a
disjunction or conjunction. A smooth d-DNNF is an NNF with the
following properties:
I Deterministic: for all disjunctive nodes the children represent

formulas pairwise inconsistent.
I Decomposable: the subtrees rooted in two children of a

conjunction node do not have atoms in common.
I Smooth: all children of a disjunction node use the same set of

atoms.

WMC can be solved in polynomial time on d-DNNFs
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5 Pipelines: from WMC to ŴMC

We are solving two tasks in one circuit4:

I Computing the weight of the total choices
I Computing the number of stable models for each total choice

Constrained KC
Constrained Knowledge Compilation allows us to solve the two
problems in polynomial time by constraining the order in which the
variables are decided.

Trade-off
Constrained variable orders typically lead to an increase of the size of
the circuit.

4Kiesel, Totis, and Kimmig, “Efficient Knowledge Compilation Beyond
Weighted Model Counting”, (Under review) (2022).
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We are solving two tasks in one circuit4:
I Computing the weight of the total choices

I Computing the number of stable models for each total choice

Constrained KC
Constrained Knowledge Compilation allows us to solve the two
problems in polynomial time by constraining the order in which the
variables are decided.

Trade-off
Constrained variable orders typically lead to an increase of the size of
the circuit.

4Kiesel, Totis, and Kimmig, “Efficient Knowledge Compilation Beyond
Weighted Model Counting”, (Under review) (2022).

46/50 Implementation



5 Pipelines: from WMC to ŴMC
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5 Pipelines: constrained compilation
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6 Summary

I Argumentation frameworks come in many flavors and
interpretations: we combine with PLP the most important ones,
unlocking additional resources for inference and learning in
argumentation.

I Traditional PLP semantics do not support common logical
patterns in argument graphs: we introduce more expressive
semantics allowing us reason on such programs.

I New semantics require new inference methods: we resort to
pipelines/compilers for stable model semantics.

I Not all circuits that allow efficient inference for WMC are
suitable for ŴMC : we constrain the variable order to be able to
solve efficiently two tasks in one circuit.
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Questions?
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