

Stable Model Semantics in ProbLog and its Applications in Argumentation

Pietro Totis KU Leuven February 21, 2022

This presentation discusses the following topics:

 How to use Probabilistic Logic Programming (PLP) to model Probabilistic Argumentation problems

This presentation discusses the following topics:

- How to use Probabilistic Logic Programming (PLP) to model Probabilistic Argumentation problems
- How to expand traditional PLP semantics to reason over such models

This presentation discusses the following topics:

- How to use Probabilistic Logic Programming (PLP) to model Probabilistic Argumentation problems
- How to expand traditional PLP semantics to reason over such models
- ▶ How to implement a PLP framework for the new semantics

1 Argumentation

- **2** Abstract Argumentation Frameworks
- 3 Probabilistic Argumentation Frameworks and ProbLog
- 4 Stable Model Semantics in ProbLog
- **5** Implementation
- 6 Conclusion

1 Outline

Argumentation

- 2 Abstract Argumentation Frameworks
- Operation of the second state of the second
- 4 Stable Model Semantics in ProbLog
- **6** Implementation
- 6 Conclusion

"Humans argue."¹

¹Either you already believe it or you would need to argue against it. Atkinson et al., "Towards Artificial Argumentation", *AI Mag.* 38.3 (2017)

Argumentation has two main components:

- 1 Argumentation mining:
 - Find Sources (newspapers, journals,...)
 - Extract Relevant text (argumentative/non-argumentative)
 - Classify Arguments (evidence, claims, proponent/opponent ...)

Argumentation has two main components:

- 1 Argumentation mining:
 - Find Sources (newspapers, journals,...)
 - Extract Relevant text (argumentative/non-argumentative)
 - Classify Arguments (evidence, claims, proponent/opponent ...)
- 2 Abstract reasoning:
 - Model Roles, structure, strength, ...
 - Reason Find accepted/defeated (undecided?) arguments

rgumentation mining: Source - Newspapers, journals,... Extract - Relevant text (argumentative/non-argumentative) Classify - Evidence, claims, proponent/opponent...

- 2 Abstract reasoning:
 - Model Roles, structure, strength, ...
 - Reason Find accepted/defeated (undecided?) arguments

We focus on modelling and reasoning...

2 Outline

Argumentation

2 Abstract Argumentation Frameworks

Operation of the second state of the second

4 Stable Model Semantics in ProbLog

5 Implementation

6 Conclusion

2 Model: Abstract Argumentation Frameworks

Definition

An Abstract Argumentation Framework (AAF) is a pair (Args, Att) where Args is a set of arguments and Att is a binary relation over Args: $Att \subseteq Args \times Args$.

We can represent an AAF as a directed graph:

f = "Hotel B is recommended by a friend"a = "Book hotel A"r = "Hotel A has higher review score"b = "Book hotel B" $Args = {f, a, r, b}$ $Att = {(f, a), (a, b), (b, a), (r, b)}$

Given an AAF, there are different "recipies" to determine acceptable arguments¹. A set of arguments $A \subseteq Args$ can be:

▶ Conflict-free (cf.) - when there are no $a, b \in A$ s.t. $(a, b) \in Att$

¹Baroni, Caminada, and Giacomin, "An introduction to argumentation semantics", *Knowl. Eng. Rev.* 26.4 (2011).

Given an AAF, there are different "recipies" to determine acceptable arguments¹. A set of arguments $A \subseteq Args$ can be:

- ▶ Conflict-free (cf.) when there are no $a, b \in A$ s.t. $(a, b) \in Att$
- Admissible A is cf. and attacks all arguments attacking A

¹Baroni, Caminada, and Giacomin, "An introduction to argumentation semantics", *Knowl. Eng. Rev.* 26.4 (2011).

Given an AAF, there are different "recipies" to determine acceptable arguments¹. A set of arguments $A \subseteq Args$ can be:

- ▶ Conflict-free (cf.) when there are no $a, b \in A$ s.t. $(a, b) \in Att$
- Admissible A is cf. and attacks all arguments attacking A
- Stable A is cf. and attacks all the arguments not in A

¹Baroni, Caminada, and Giacomin, "An introduction to argumentation semantics", *Knowl. Eng. Rev.* 26.4 (2011).

Given an AAF, there are different "recipies" to determine acceptable arguments¹. A set of arguments $A \subseteq Args$ can be:

- ▶ Conflict-free (cf.) when there are no $a, b \in A$ s.t. $(a, b) \in Att$
- Admissible A is cf. and attacks all arguments attacking A
- Stable A is cf. and attacks all the arguments not in A

¹Baroni, Caminada, and Giacomin, "An introduction to argumentation semantics", *Knowl. Eng. Rev.* 26.4 (2011).

• . . .

2 Reasoning: more expressivity

Each extension to the original AAF requires new ad-hoc semantics to define classes of acceptable arguments in the new framework.

2 Reasoning: more expressivity

Each extension to the original AAF requires new ad-hoc semantics to define classes of acceptable arguments in the new framework.

Combining models

Integrating different formalisms becomes difficult: it requires to redefine the acceptability semantics with new concepts tailored to the specific combination of modelling strategies.

2 Reasoning: more expressivity

Each extension to the original AAF requires new ad-hoc semantics to define classes of acceptable arguments in the new framework.

Combining models

Integrating different formalisms becomes difficult: it requires to redefine the acceptability semantics with new concepts tailored to the specific combination of modelling strategies.

What if we had a general-purpose framework with powerful semantics for encoding many extensions?

3 Outline

Argumentation

- 2 Abstract Argumentation Frameworks
- **3** Probabilistic Argumentation Frameworks and ProbLog

KU LEUVE

- 4 Stable Model Semantics in ProbLog
- **5** Implementation

6 Conclusion

Why Probabilistic Logic Programming

Probabilistic Logic Programming and its tools offer a *general purpose* framework for logical reasoning and uncertainty. This gives some advantages over traditional argumentation frameworks:

Why Probabilistic Logic Programming

Probabilistic Logic Programming and its tools offer a *general purpose* framework for logical reasoning and uncertainty. This gives some advantages over traditional argumentation frameworks:

Succinctness and expressivity - express complex interactions between random variables with (first-order) logic rules.

Why Probabilistic Logic Programming

Probabilistic Logic Programming and its tools offer a *general purpose* framework for logical reasoning and uncertainty. This gives some advantages over traditional argumentation frameworks:

- Succinctness and expressivity express complex interactions between random variables with (first-order) logic rules.
- Flexibility and modularity change and evolve a model for specific domains without changing the underlying reasoning algorithms.

Why Probabilistic Logic Programming

Probabilistic Logic Programming and its tools offer a *general purpose* framework for logical reasoning and uncertainty. This gives some advantages over traditional argumentation frameworks:

- Succinctness and expressivity express complex interactions between random variables with (first-order) logic rules.
- Flexibility and modularity change and evolve a model for specific domains without changing the underlying reasoning algorithms.
- PLP tools bring to argumentation the general suite of PLP inference and learning algorithms.

3 Modelling: What about probabilities?

Definition

A probabilistic argument graph (or probabilistic AAF) is a tuple $(Args, Att, P^*)$ where (Args, Att) is an AAF and P^* is a function: $P^* : Args \rightarrow [0, 1]$.

14/50 Probabilistic Argumentation Frameworks and ProbLog

3 Modelling: What about probabilities?

Definition

A probabilistic argument graph (or probabilistic AAF) is a tuple $(Args, Att, P^*)$ where (Args, Att) is an AAF and P^* is a function: $P^* : Args \rightarrow [0, 1]$. We can also add a function over attacks: $P^{\times} : Args \times Args \rightarrow [0, 1]$.

3 Modelling: what do probabilities represent?

Probabilities as *degrees of belief*: they represent how much the argument or relation is believed.

Epistemic interpretation

A probabilistic argument graph describes:

• arguments' prior beliefs (P^*) i.e. a bias.

3 Modelling: what do probabilities represent?

Probabilities as *degrees of belief*: they represent how much the argument or relation is believed.

Epistemic interpretation

A probabilistic argument graph describes:

- arguments' prior beliefs (P^*) i.e. a bias.
- how the initial bias is influenced by the other arguments.

3 Modelling: from *probabilistic* AAFs to ProbLog

0.3::f. 0.6::a. 0.7::r. 0.4::b. \+ a :- f. \+ b :- r. \+ b :- a. \+ a :- b.

$$P(f) = 0.3 P(r) = 0.7$$

 $P(a) = 0.4 P(b) = 0.1$

18/50 Probabilistic Argumentation Frameworks and ProbLog

3 Modelling: from gradual AAFs to ProbLog

3 Modelling: from *bipolar* AAFs to ProbLog

$$\begin{array}{c} 0.3::f. \ 0.6::a.\\ 0.7::r. \ 0.4::b.\\ \hline 0.5::c.\\ 0.5:: \ + a:-f.\\ 1.0:: \ + b:-a.\\ 1.0:: \ + a:-b.\\ 0.2:: \ + b:-r.\\ \hline 0.3::a:-c.\\ \end{array}$$

$$P(f) = 0.3 P(r) = 0.7$$

 $P(a) = 0.47 P(b) = 0.25$

3 Modelling: from set-based AAFs to ProbLog

4 Outline

Argumentation

- 2 Abstract Argumentation Frameworks
- Operation of the second state of the second
- 4 Stable Model Semantics in ProbLog
- **5** Implementation

6 Conclusion

4 Probabilistic Logic Programs

Distribution semantics

Each possible choice of all probabilistic facts (total choice) defines a *possible world*: a deterministic program of the chosen facts plus logic rules

4 Probabilistic Logic Programs

Distribution semantics

Each possible choice of all probabilistic facts (total choice) defines a *possible world*: a deterministic program of the chosen facts plus logic rules

Assumption of traditional PLP semantics

All choices are modelled by probabilistic facts: the total choice uniquely determines the truth value of all atoms.

4 Probabilistic Logic Programs

Distribution semantics

Each possible choice of all probabilistic facts (total choice) defines a *possible world*: a deterministic program of the chosen facts plus logic rules

Assumption of traditional PLP semantics

All choices are modelled by probabilistic facts: the total choice uniquely determines the truth value of all atoms.

Example

In our hotel example for the *probabilistic* choice where neither the friend nor the reviews influence the choice of the hotel, logic still prescribes a choice between the two options.
Distribution semantics + Well-founded model semantics

Traditional PLP frameworks cannot reason over programs with cyclic dependencies through negation

Possible world $\omega_1 = \{c, d\}$: $P(\omega_1) = 0.4 \cdot 0.6 = 0.24$

Possible world $\omega_1 = \{c, d\}$: $P(\omega_1) = 0.4 \cdot 0.6 = 0.24$ MOD $(\omega_1) = \{a, b, c, d\}$

Possible world $\omega_1 = \{c, d\}$: $P(\omega_1) = 0.4 \cdot 0.6 = 0.24$ MOD $(\omega_1) = \{a, b, c, d\}$

Possible world $\omega_1 = \{c, d\}$: $P(\omega_1) = 0.4 \cdot 0.6 = 0.24$ MOD $(\omega_1) = \{a, b, c, d\}$

Possible world $\omega_1 = \{c, d\}$: $P(\omega_1) = 0.4 \cdot 0.6 = 0.24$ MOD $(\omega_1) = \{a, b, c, d\}$

Possible world $\omega_2 = \{c\}$: $P(\omega_2) = 0.4 \cdot (1 - 0.6) = 0.16$

Possible world $\omega_2 = \{c\}$: $P(\omega_2) = 0.4 \cdot (1 - 0.6) = 0.16$ MOD $(\omega_2) = \{a, c\}$

Possible world $\omega_2 = \{c\}$: $P(\omega_2) = 0.4 \cdot (1 - 0.6) = 0.16$ MOD $(\omega_2) = \{a, c\}$

Possible world $\omega_3 = \{d\}$: $P(\omega_3) = (1 - 0.4) \cdot 0.6 = 0.36$

Possible world $\omega_3 = \{d\}$: $P(\omega_3) = (1 - 0.4) \cdot 0.6 = 0.36$ MOD $(\omega_3) = \{b, d\}$

Possible world $\omega_3 = \{d\}$: $P(\omega_3) = (1 - 0.4) \cdot 0.6 = 0.36$ MOD $(\omega_3) = \{b, d\}$

Possible world $\omega_4 = \{\}: P(\omega_4) = (1 - 0.4) \cdot (1 - 0.6) = 0.24$

Possible world $\omega_4 = \{\}: P(\omega_4) = (1 - 0.4) \cdot (1 - 0.6) = 0.24$ MOD $(\omega_4) = ?$

Possible world $\omega_4 = \{\}: P(\omega_4) = (1 - 0.4) \cdot (1 - 0.6) = 0.24$ MOD $(\omega_4) = \{a\}$

Possible world $\omega_4 = \{\}: P(\omega_4) = (1 - 0.4) \cdot (1 - 0.6) = 0.24$ MOD $(\omega_4) = \{a\}$ or $\{b\}$

Valid ProbLog programs are programs where each total choice corresponds to *exactly one* well-founded model.

²Totis, Kimmig, and De Raedt, "SMProbLog: Stable Model Semantics in ProbLog and its Applications in Argumentation", *StarAI* abs/2110.01990 (2021).

- Valid ProbLog programs are programs where each total choice corresponds to *exactly one* well-founded model.
- ω_4 has no well-founded model.

²Totis, Kimmig, and De Raedt, "SMProbLog: Stable Model Semantics in ProbLog and its Applications in Argumentation", *StarAI* abs/2110.01990 (2021).

- Valid ProbLog programs are programs where each total choice corresponds to *exactly one* well-founded model.
- ω_4 has no well-founded model.

SMProbLog programs

 ${
m SMProbLog}^2$ reasons over the (zero or more) *stable models* of each total choice.

²Totis, Kimmig, and De Raedt, "SMProbLog: Stable Model Semantics in ProbLog and its Applications in Argumentation", *StarAI* abs/2110.01990 (2021).

- Valid ProbLog programs are programs where each total choice corresponds to *exactly one* well-founded model.
- ω_4 has no well-founded model.

SMProbLog programs

 ${
m SMProbLog}^2$ reasons over the (zero or more) *stable models* of each total choice.

If a program has one well-founded model then it is its unique stable model

²Totis, Kimmig, and De Raedt, "SMProbLog: Stable Model Semantics in ProbLog and its Applications in Argumentation", *StarAI* abs/2110.01990 (2021).

P.W.	Facts	Probability	Model
ω_1	$\{c,d\}$	0.24	$\{a, b, c, d\}$
ω_2	$\{c\}$	0.16	$\{c,a\}$
ω_3	$\{d\}$	0.36	$\{d,b\}$
ω_4	{}	0.24	$\{a\},\{b\}$

______ 0.4::c. _______ 0.6::d. _______ a :- c. ______ b :- d. a :- \+ b. ______ b :- \+ a.

P.W.	Facts	Probability	Model
ω_1	$\{c,d\}$	0.24	$\{a, b, c, d\}$
ω_2	$\{c\}$	0.16	$\{c,a\}$
ω_3	$\{d\}$	0.36	$\{d,b\}$
ω_4	{}	0.24	$\{a\},\{b\}$

What about the probability of atoms?

P.W.	Facts	Probability	Model
ω_1	$\{c,d\}$	0.24	$\{a, b, c, d\}$
ω_2	$\{c\}$	0.16	$\{c,a\}$
ω_3	$\{d\}$	0.36	$\{d,b\}$
ω_4	{}	0.24	$\{a\},\{b\}$

What about the probability of atoms?

$$P(a) = \sum_{M \models a, M = \text{MOD}(\omega)} P(M)$$

P.W.	Facts	Probability	Model
ω_1	$\{c,d\}$	0.24	$\{a, b, c, d\}$
ω_2	$\{c\}$	0.16	$\{c,a\}$
ω_3	$\{d\}$	0.36	$\{d,b\}$
ω_4	{}	0.24	$\{a\},\{b\}$

What about the probability of atoms?

$$P(a) = \sum_{M \models a, M = \text{MOD}(\omega)} \frac{P(M)}{P(M)}$$

We need to define the probability distribution of the models...

With stable model semantics we have choices that are prescribed by logical consistency rather than probabilistic facts.

KU LEUVEN

- With stable model semantics we have choices that are prescribed by logical consistency rather than probabilistic facts.
- We thus assume that for a fixed possible world all further (logical) choices are equally possible.

- With stable model semantics we have choices that are prescribed by logical consistency rather than probabilistic facts.
- We thus assume that for a fixed possible world all further (logical) choices are equally possible.
- The probability of a model is thus the probability of the possible world normalized w.r.t. the number of non-probabilistic choices.

Let \mathcal{L} be a probabilistic logic program, $\Omega_{\mathcal{L}}$ its set of possible worlds, and $MOD(\omega)$ the set of models of a possible world $\omega \in \Omega_{\mathcal{L}}$, then:

Let \mathcal{L} be a probabilistic logic program, $\Omega_{\mathcal{L}}$ its set of possible worlds, and $MOD(\omega)$ the set of models of a possible world $\omega \in \Omega_{\mathcal{L}}$, then:

$$P(M) = rac{P(\omega)}{|\mathrm{MOD}(\omega)|}$$
 for each $M \in \mathrm{MOD}(\omega)$

Let \mathcal{L} be a probabilistic logic program, $\Omega_{\mathcal{L}}$ its set of possible worlds, and $MOD(\omega)$ the set of models of a possible world $\omega \in \Omega_{\mathcal{L}}$, then:

$$P(M) = \frac{P(\omega)}{|MOD(\omega)|}$$
 for each $M \in MOD(\omega)$

KU LEUVE

The probability of an atom is then:

Let \mathcal{L} be a probabilistic logic program, $\Omega_{\mathcal{L}}$ its set of possible worlds, and $MOD(\omega)$ the set of models of a possible world $\omega \in \Omega_{\mathcal{L}}$, then:

$$P(M) = \frac{P(\omega)}{|MOD(\omega)|}$$
 for each $M \in MOD(\omega)$

The probability of an atom is then:

$$P(a) = \sum_{a \in M, M \in \text{MOD}(\omega), \omega \in \Omega_{\mathcal{L}}} P(M)$$

Let \mathcal{L} be a probabilistic logic program, $\Omega_{\mathcal{L}}$ its set of possible worlds, and $MOD(\omega)$ the set of models of a possible world $\omega \in \Omega_{\mathcal{L}}$, then:

$$P(M) = \frac{P(\omega)}{|MOD(\omega)|}$$
 for each $M \in MOD(\omega)$

The probability of an atom is then:

$$P(a) = \sum_{a \in M, M \in \text{MOD}(\omega), \omega \in \Omega_{\mathcal{L}}} P(M)$$

KU LEUV

We thus solve for a query φ :

Let \mathcal{L} be a probabilistic logic program, $\Omega_{\mathcal{L}}$ its set of possible worlds, and $MOD(\omega)$ the set of models of a possible world $\omega \in \Omega_{\mathcal{L}}$, then:

$$P(M) = \frac{P(\omega)}{|MOD(\omega)|}$$
 for each $M \in MOD(\omega)$

The probability of an atom is then:

$$P(a) = \sum_{a \in M, M \in \text{MOD}(\omega), \omega \in \Omega_{\mathcal{L}}} P(M)$$

We thus solve for a query φ :

$$\widehat{WMC}_{\mathcal{L}}(\varphi) = \sum_{M \models \varphi, M \in \text{MOD}(\omega), \omega \in \Omega_{\mathcal{L}}} \frac{1}{|\text{MOD}(\omega)|} \cdot \prod_{l \in M} w(l)$$

KU LEUV

P.W.	Facts	Probability	Model	P(M)	
ω_1	$\{c,d\}$	0.24	$\{a, b, c, d\}$	0.24	
ω_2	$\{c\}$	0.16	$\{c,a\}$	0.16	
ω_3	$\{d\}$	0.36	$\{d,b\}$	0.36	
ω_4	{}	0.24	$\{a\}, \{b\}$	0.12, 0.12	a
					b

(0.4	::c	•
(0.6	::d	•
a	a :	- c	•
1	o :	- d	•
a	:-	\setminus +	b.
b	:-	\+	a.

P.W.	Facts	Probability	Model	P(M)	0.4::c.
ω_1	$\{c,d\}$	0.24	$\{a,b,c,d\}$	0.24	0.6::d.
ω_2	$\{c\}$	0.16	$\{c,a\}$	0.16	a :- c.
ω_3	$\{d\}$	0.36	$\{d,b\}$	0.36	b :- d.
ω_4	{}	0.24	$\{a\}, \{b\}$	0.12, 0.12	a :- \+ b.
		•	•		b :- \+ a.

P(c) = 0.24 + 0.16 = 0.4

P.W.	Facts	Probability	Model	P(M)	0.4::c.
ω_1	$\{c,d\}$	0.24	$\{a,b,c,d\}$	0.24	0.6::d.
ω_2	$\{c\}$	0.16	$\{c,a\}$	0.16	a :- c.
ω_3	$\{d\}$	0.36	$\{d,b\}$	0.36	b :- d.
ω_4	{}	0.24	$\{a\}, \{b\}$	0.12, 0.12	a :- \+ b.
	•	•	-	•	b :- \+ a.

P(c) = 0.24 + 0.16 = 0.4P(d) = 0.24 + 0.36 = 0.6
4 Probabilistic Logic Programs: success probability

P.W.	Facts	Probability	Model	P(M)	ĺ
ω_1	$\{c,d\}$	0.24	$\{a, b, c, d\}$	0.24	ĺ
ω_2	$\{c\}$	0.16	$\{c,a\}$	0.16	
ω_3	$\{d\}$	0.36	$\{d,b\}$	0.36	ĺ
ω_4	{}	0.24	$\{a\}, \{b\}$	0.12 , 0.12	6

$$P(c) = 0.24 + 0.16 = 0.4$$

$$P(d) = 0.24 + 0.36 = 0.6$$

$$P(a) = 0.24 + 0.16 + 0.12 = 0.52$$

4 Probabilistic Logic Programs: success probability

P.W.	Facts	Probability	Model	P(M)
ω_1	$\{c,d\}$	0.24	$\{a,b,c,d\}$	0.24
ω_2	$\{c\}$	0.16	$\{c,a\}$	0.16
ω_3	$\{d\}$	0.36	$\{d,b\}$	0.36
ω_4	{}	0.24	{a}, { b }	0.12, 0.12

0.4::c.
0.6::d.
a :- c.
b :- d.
a :- \+ b.
b :- \+ a.

$$P(c) = 0.24 + 0.16 = 0.4$$

$$P(d) = 0.24 + 0.36 = 0.6$$

$$P(a) = 0.24 + 0.16 + 0.12 = 0.52$$

$$P(b) = 0.24 + 0.36 + 0.12 = 0.72$$

An even (odd, respectively) cycle is a simple cycle with a non-zero even (odd, respectively) number of negative edges.

 $Even/odd \ cycles \ through \ negations$

An even (odd, respectively) cycle is a simple cycle with a non-zero even (odd, respectively) number of negative edges.

$Even/odd \ cycles \ through \ negations$

 if a program has no even-length cycle, then it has at most one stable model

An even (odd, respectively) cycle is a simple cycle with a non-zero even (odd, respectively) number of negative edges.

Even/odd cycles through negations

- if a program has no even-length cycle, then it has at most one stable model
- if a program has no odd-length cycle (*call-consistent*), then it has at least one stable model

An even (odd, respectively) cycle is a simple cycle with a non-zero even (odd, respectively) number of negative edges.

Even/odd cycles through negations

 if a program has no even-length cycle, then it has at most one stable model

if a program has no odd-length cycle (*call-consistent*), then it has at least one stable model

Lin and Zhao, "On Odd and Even Cycles in Normal Logic Programs" (2004)

0.4::c.
0.6::d.

$$a := c.$$

 $a := d.$
 $b := a, +b.$
 $e := +a.$

0.4::c. 0.6::d. a :- c. a :- d. b :- a, \+b. e :- \+a.

If c or d are chosen, a is true and the possible world has 0 stable models

0.4::c. 0.6::d. a :- c. a :- d. b :- a, \+b. e :- \+a.

- If c or d are chosen, a is true and the possible world has 0 stable models
- Therefore logic states that some total choices are *inconsistent* with the domain knowledge.

0.	4::	c.	
0.	6::	d.	
a	:-	c.	
a	:-	d.	
b	:-	a,	\+b.
e	:-	\+a	•

- If c or d are chosen, a is true and the possible world has 0 stable models
- Therefore logic states that some total choices are *inconsistent* with the domain knowledge.

We use a *three-valued interpretation* to keep track of the probability of inconsistent choices.

Three-valued interpretaiton

Three-valued interpretaiton

	P.W.	Facts	Probability	Model
0.4::c.	ω_1	$\{c,d\}$	0.24	$\{(\emptyset, \emptyset)\}$
0.6::d.	ω_2	$\{c\}$	0.16	$\{(\emptyset, \emptyset)\}$
a :- c.	ω_3	$\{d\}$	0.36	$\{(\emptyset, \emptyset)\}$
a :- d.	ω_4	{}	0.24	$\{(\{e\}, \{c, d, a, b\})\}$
b :- a, \+b.				
e :- \+a.				

Three-valued interpretaiton

	P.W.	Facts	Probability	Model
0.4::c.	ω_1	$\{c,d\}$	0.24	$\{(\emptyset, \emptyset)\}$
0.6::d.	ω_2	$\{c\}$	0.16	$\{(\emptyset, \emptyset)\}$
a :- c.	ω_3	$\{d\}$	0.36	$\{(\emptyset, \emptyset)\}$
a :- d.	ω_4	{}	0.24	$ \left \ \{(\{e\}, \{c, d, a, b\})\} \right $
b :- a, \+b. e :- \+a.	$P(\mathcal{L} \models \bot) = 0.24 + 0.16 + 0.36 = 0.76$.36 = 0.76

Three-valued interpretaiton

	P.W.	Facts	Probability	Model
0.4::c.	ω_1	$\{c,d\}$	0.24	$\{(\emptyset, \emptyset)\}$
0.6::d.	ω_2	$\{c\}$	0.16	$\{(\emptyset, \emptyset)\}$
a :- c.	ω_3	$\{d\}$	0.36	$\{(\emptyset, \emptyset)\}$
a :- d.	ω_4	{}	0.24	$\{(\{e\}, \{c, d, a, b\})\}$
b :- a, \+b. e :- \+a.	$P(\mathcal{L} \models \bot) = 0.24 + 0.16 + 0.36 = 0.76$ $P(e) = P(\neg b) = 0.24$			

Three-valued interpretaiton

	P.W.	Facts	Probability	Model	
0.4::c.	ω_1	$\{c,d\}$	0.24	$\{(\emptyset, \emptyset)\}$	
0.6::d.	ω_2	$\{c\}$	0.16	$\{(\emptyset, \emptyset)\}$	
a :- c.	ω_3	$\{d\}$	0.36	$\{(\emptyset, \emptyset)\}$	
a :- d.	ω_4	{}	0.24	$\{(\{e\}, \{c, d, a, b\})\}$	
b :- a, \+b. e :- \+a.	$P(\mathcal{L} \models \bot) = 0.24 + 0.16 + 0.36 = 0.76$ $P(e) = P(\neg b) = 0.24$				
$\mid P(\neg e) = P(b) = 0$					

5 Outline

Argumentation

- 2 Abstract Argumentation Frameworks
- Operation of the second state of the second
- 4 Stable Model Semantics in ProbLog

5 Implementation

6 Conclusion

5 Pipelines

KU LEUVEN

5 Pipelines: differences

Cycle breaking and CNF conversion do not preserve stable models

³Aziz et al., "Stable Model Counting and Its Application in Probabilistic Logic Programming" (2015).

5 Pipelines: differences

Cycle breaking and CNF conversion do not preserve stable models

▶ We need a knowledge compiler for stable models: DSHARP³

³Aziz et al., "Stable Model Counting and Its Application in Probabilistic Logic Programming" (2015).

5 Pipelines: differences

- Cycle breaking and CNF conversion do not preserve stable models
- We need a knowledge compiler for stable models: DSHARP³
- We need then to count the stable models to solve the \widehat{WMC} problem

³Aziz et al., "Stable Model Counting and Its Application in Probabilistic Logic Programming" (2015).

Definition

A *NNF* is a rooted directed acyclic graph in which each leaf node is labeled with a literal and each internal node is labeled with a disjunction or conjunction. A smooth *d*-*DNNF* is an NNF with the following properties:

- Deterministic: for all disjunctive nodes the children represent formulas pairwise inconsistent.
- Decomposable: the subtrees rooted in two children of a conjunction node do not have atoms in common.
- Smooth: all children of a disjunction node use the same set of atoms.

Definition

A *NNF* is a rooted directed acyclic graph in which each leaf node is labeled with a literal and each internal node is labeled with a disjunction or conjunction. A smooth *d*-*DNNF* is an NNF with the following properties:

- Deterministic: for all disjunctive nodes the children represent formulas pairwise inconsistent.
- Decomposable: the subtrees rooted in two children of a conjunction node do not have atoms in common.
- Smooth: all children of a disjunction node use the same set of atoms.

WMC can be solved in polynomial time on d-DNNFs

KU LEUVEN

KU LEUVEN

44/50 Implementation

45/50 Implementation

We are solving two tasks in one circuit⁴:

We are solving two tasks in one circuit⁴:

Computing the weight of the total choices

⁴Kiesel, Totis, and Kimmig, "Efficient Knowledge Compilation Beyond Weighted Model Counting", *(Under review)* (2022).

We are solving two tasks in one circuit⁴:

- Computing the weight of the total choices
- Computing the number of stable models for each total choice

We are solving two tasks in one circuit⁴:

- Computing the weight of the total choices
- Computing the number of stable models for each total choice

Constrained KC

Constrained Knowledge Compilation allows us to solve the two problems in polynomial time by constraining the order in which the variables are decided.

We are solving two tasks in one circuit⁴:

- Computing the weight of the total choices
- Computing the number of stable models for each total choice

Constrained KC

Constrained Knowledge Compilation allows us to solve the two problems in polynomial time by constraining the order in which the variables are decided.

Trade-off

Constrained variable orders typically lead to an increase of the size of the circuit.

5 Pipelines: constrained compilation

6 Outline

Argumentation

- 2 Abstract Argumentation Frameworks
- Operation of the second state of the second
- 4 Stable Model Semantics in ProbLog
- **5** Implementation

6 Summary

Argumentation frameworks come in many flavors and interpretations: we combine with PLP the most important ones, unlocking additional resources for inference and learning in argumentation.

6 Summary

- Argumentation frameworks come in many flavors and interpretations: we combine with PLP the most important ones, unlocking additional resources for inference and learning in argumentation.
- Traditional PLP semantics do not support common logical patterns in argument graphs: we introduce more expressive semantics allowing us reason on such programs.

6 Summary

- Argumentation frameworks come in many flavors and interpretations: we combine with PLP the most important ones, unlocking additional resources for inference and learning in argumentation.
- Traditional PLP semantics do not support common logical patterns in argument graphs: we introduce more expressive semantics allowing us reason on such programs.
- New semantics require new inference methods: we resort to pipelines/compilers for stable model semantics.

6 Summary

- Argumentation frameworks come in many flavors and interpretations: we combine with PLP the most important ones, unlocking additional resources for inference and learning in argumentation.
- Traditional PLP semantics do not support common logical patterns in argument graphs: we introduce more expressive semantics allowing us reason on such programs.
- New semantics require new inference methods: we resort to pipelines/compilers for stable model semantics.
- Not all circuits that allow efficient inference for WMC are suitable for WMC: we constrain the variable order to be able to solve efficiently two tasks in one circuit.

Questions?

