

Lifted Reasoning for Combinatorial Counting

Journal of Artificial Intelligence Research 76: 1-58 (2023)

Pietro Totis, Jesse Davis, Luc De Raedt, Angelika Kimmig

ECAI, 21 Oct. 2024

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Pietro Totis, Jesse Davis, Luc De Raedt, Angelika Kimmig: Lifted Reasoning for Combinatorial Counting. J. Artif. Intell. Res. 76: 1-58 (2023)

Fundamental components:

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Pietro Totis, Jesse Davis, Luc De Raedt, Angelika Kimmig: Lifted Reasoning for Combinatorial Counting. J. Artif. Intell. Res. 76: 1-58 (2023)

Fundamental components:

Multisets

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Fundamental components:

- Multisets
- Configurations

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?" Fundamental components:

- Multisets
- Configurations
- Constraints

Contribution 1: CoLa language

Research question

What are the key characteristics of a modelling language for encoding combinatorics math problems?

Key novelty

Generalize sets of objects (*constants*) to multisets in a declarative language.

Sets vs. multisets

Traditional declarative frameworks represent the objects of the domain with *distinguishable* constants (same constant = same object).

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Set: { $B A_1 N_1 A_2 N_2 A_3$ }

Multiset: { B A N A N A }

Sets vs. multisets

Traditional declarative frameworks represent the objects of the domain with *distinguishable* constants (same constant = same object).

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Set: {
$$B A_1 N_1 A_2 N_2 A_3$$
 }

Defining objects with constants that are always distinguishable does not affect *satisfiability* but does affect *counting*.

$$\begin{array}{c} \mathsf{B}\;\mathsf{A}_1\;\mathsf{N}_1\\\mathsf{B}\;\mathsf{A}_1\;\mathsf{N}_2\\\mathsf{A}_2\;\mathsf{N}_1\;\mathsf{A}_2\\\mathsf{A}_3\end{array}\mathsf{N}_1\;\mathsf{A}_3\\\mathsf{A}_3\end{array}$$

$$\begin{bmatrix} B & A_1 \\ B & A_1 \\ B & A_1 \\ \end{bmatrix} \begin{bmatrix} N & A_2 \\ A_2 \\ B & A_3 \\ \end{bmatrix} \begin{bmatrix} N & A_3 \\ A_3 \\ B & A_3 \\ \end{bmatrix}$$

Count = 2 words

Count = 1 word

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?" Result 60

Result 288

Contribution 1: CoLa language

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Contribution 1

universe letters =
{a,a,a,n,n,b};
word in [letters];
#word = 6;

Result 60

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Contribution 1

```
labelled property tvs;
property defective;
#tvs = 12;
#( tvs & defective ) = 3;
purchase in { tvs };
#purchase = 5;
#( purchase & defective )>=2;
```


Contribution 1: CoLa language - multisets

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Contribution 1

universe letters =
{a,a,a,n,n,b};
word in [letters];
#word = 6;

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Contribution 1

```
labelled property tvs;
property defective;
#tvs = 12;
#( tvs & defective ) = 3;
purchase in { tvs };
#purchase = 5;
#( purchase & defective )>=2;
```


Contribution 1: CoLa language - configurations

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Contribution 1

universe letters =
{a,a,a,n,n,b};
word in [letters];
#word = 6;

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Contribution 1

```
labelled property tvs;
property defective;
#tvs = 12;
#( tvs & defective ) = 3;
purchase in { tvs };
#purchase = 5;
#( purchase & defective )>=2;
```


Contribution 1: CoLa language - constraints

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Contribution 1

universe letters =
{a,a,a,n,n,b};
word in [letters];
#word = 6;

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Contribution 1

```
labelled property tvs;
property defective;
#tvs = 12;
#( tvs & defective ) = 3;
purchase in { tvs };
#purchase = 5;
#( purchase & defective )>=2;
```


Contribution 1: CoLa language

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Contribution 1

universe letters =
{a,a,a,n,n,b};
word in [letters];
#word = 6;

Contribution 2

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Contribution 1

```
labelled property tvs;
property defective;
#tvs = 12;
#( tvs & defective ) = 3;
purchase in { tvs };
#purchase = 5;
#( purchase & defective )>=2;
```


Contribution 2: CoSo

Research question

How can models for combinatorics math problems be efficiently solved?

Key novelty

Lifted reasoning: exploit the size of groups and symmetries of the problem to count efficiently.

Propositional reasoning

Lifted reasoning

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Contribution 2: CoSo solver

Example 1

"In how many different ways can the letters in B A N A N A be written?"

Contribution 1

universe letters =
{a,a,a,n,n,b};
word in [letters];
#word = 6;

Example 2

"A shipment of 12 different TVs contains 3 defective ones. In how many ways can a hotel purchase 5 of these TVs and receive at least 2 of the defective ones?"

Contribution 1

```
labelled property tvs;
property defective;
#tvs = 12;
#( tvs & defective ) = 3;
purchase in { tvs };
#purchase = 5;
#( purchase & defective )>=2;
```

$\binom{3}{2} \cdot \binom{9}{3} +$

	Sets/multisets	Configurations	Constraint arity	Modelling	Lifted counting
Forclift	x	х	=2	х	1
WFOMC FO ²	x	х	≥2	х	1
GC-FOVE	x	x	≥2	x	1
CSPs	sets	1	≥2	1	x
CoLa+CoSo	1	1	≥2	1	1

• Probabilistic frameworks implement lifted counting algorithms, but are based on first-order logic, with limited constraint support and limited input language

	Sets/multisets	Configurations	Constraint arity	Modelling	Lifted counting
Forclift	x	х	=2	x	1
WFOMC FO ²	x	x	≥2	x	1
GC-FOVE	x	x	≥2	х	1
CSPs	sets	1	≥2	1	x
CoLa+CoSo	1	1	≥2	1	1

• CSP frameworks offer primitives for sets and constraints, but not for multisets, and counting is typically done via (propositional) enumeration of the solutions

Experiments

• CoSo outperforms propositional frameworks with the increase of the number of solutions

Real-world dataset	# unsolved /185 problems	avg. time (solved)	
CoLa-CoSo	0	0.18s	
ASP-Clingo	52	5.70s	
CNF-sharpSAT	75	7.44s	
ESSENCE-Conj ure (CSPs)	32	34.99s	

Resources

JAIR paper

DECLARATIVE LANGUAGES & DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE A DECLARATIVE DECLARATIVE DECLARATIVE DECLARATIVE DECLA Problem 8 Root problem 🛦 Universe 🔍 A Configuration S O Constraints 🗸 = 288 = 288Configuration of size 5 🚯 Universe 🖂 A Configuration V 🛇 Constraints 🖂 = 288 = 252 Case with 2 defective 🛦 Universe 😒 🛦 Configuration 🖂 O Constraints = 252 = 3 × 84 Left split: case 2 defective are s.t. [Nr. Right split removing 2 defective tvs = 2] 🛦 Universe 🖂 🛦 Universe 🕟 A Configuration ^ A Configuration Q Constraints CoLa a → Obj 1: -defective; Obj 2: -defective; Obj 3: -defective; CoLa ^ Nr. tvs = 2; = 84 = 3 + 36 Case with 3 defective 🛦 Universe 🖂